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~1STATEMENT OF SCOPE AND PURPOSE

This paper presents new computational methods that facilitate digital corn—

puter analysis of some important military operations research problems. Even though

combat between two military forces is a complex random process, deterministic

Lanchester—type differential equations [1] are coninonly used in defense planning

studies. A so—called attrition—rate coefficient in such a combat model represents

the fire effectiveness of a weapon—system type against a particular target type ,

i.e. its effective firepower. Time—dependent attrition—rate coefficients are used - 

-

to model temporal variations in firepower on the battlefield . For such a variable—

coefficient Lanchester—type combat model, we present a simple numerical procedure

that allows one (without having to explicitly solve the equations) not only to predict

battle outcome but also to parametrically tradeoff quality versus quantity of two

opposing weapon systems.

REFERENCE

Ll] L. DOLANS KY , Present state of the Lanchester theory of combat , Opns. Res. 12 ,
344—358 (1964),
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ABSTRACT

This paper presents a simple numerical procedure for determining the

parity—condition parameter for Lanchester—type combat between two homogeneous

forces. The combat studied is modelled by Lanchester—type equations of modern

warfare with time—dependent attrition—rate coefficients. Previous research has

shown that the prediction of battle outcome (in particular , force annihilation)

without having to spend the time and effort of computing force—level trajectories

depends on a single parameter , the so—called parity—condition parameter , which

only depends on the attrition—rate coefficients. Unfortunately, previous research

did not show how to generally determine this parameter. We present general

theoretical considerations for its numerical noniterative determination . This

general theory is applied to an important class of attrition—rate coefficients

(offset power attrition—rate coefficients). Our results allow one to stuiy

such variable—coefficient combat models almost as easily and thoroughly as

Lanchester’s classic constant—coefficient model.

_ _  . .~-
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1. Introduction

As a consequence of pioneer ing work by F. W. Lant~hester [16) done about the time

of World War I, military operations analysts have used simplified deterministict dif-

ferential—equation models to develop insights into the dynamics of combat from about

the end of World War II (see, fo r example, [1], [7—8], [13], [24—28]). The advent of

the modern high—speed digital computer has made feasible the development arid use of

quite complicated versions of such Lanchester—type models as practical defense planning

tools [6]. Thus, today militarily realistic computer—based Lanchester—type models of

quite complex combat systems have been developed. Such models currently exist for

almost the entire spectrum of combat operations , horn combat between battalion—sized

[9] and division—sized [10] units to theater—level operations [12,14].

A simple combat model, however , may yield a clearer understanding of important

interrelationships that are difficult to perceive in a more complex model, and such

insights can provide valuable guidance for more detailed computerized investigations

(see [7,28]). In this paper we present a new important numerical procedure that

facilitates parametric analysis~ of battle outcomes for such simplified Lanchester—

type models of combat between two homogeneous forces with temporal variations in each

side ’s fire effectiveness. Previously, such battle—outcome information could only be

readily obtained from constant—coefficient modelsj’ These results are not only

significant in their own right but are also useful in the quantitative analysis of

time—sequential combat strategies (see, for example , [19—20]).

It is important for the military operations analyst to have a clear understand-

ing of how force—level and weapon—system—performance parameters interact to determine

~Corresponding stochastic formulations are for all practical purposes analytically
intractable (see Note 1 on p. 65 of [22]).

*Also frequently called differential models of combat [10].

~In particular , the parametric examination of force—annihilation prediction .

“ S. Bonder [1—3) has emphasized the deficiencies of constant—coefficient models
(see Section 3 below). 
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a battle’s outcome. Such knowledge is particularly useful in weapon—system and force—

level planning activities for defense planning.~ S. Bonder’s [1,3,7] pioneering work

on methodology for the evaluation of military systems (particularly mobile systems

such as tanks , mechanized infantry combat vehicles , etc.) provides a motivation for

interest in variable—coefficient, deterministic, Lanchester—type combat models such

as we consider in this paper. He has stressed (see pp. 30—31 of [7)) the importance

of analytical solutions to such models for developing insights into the dynamics of

combat by portraying the relation between various factors in the combat attrition

process and the surviving numbers of forces and for facilitating sensitivity and

other parametric analyses (see [5]). Unfortunately, as work by Bonder and Farrell

[7] and Taylor (18,221 shows, the analytical (i.e. infinite series) solution to

variable—coefficient equations generally by itse1f~ provides little information

about battle outcome because of its complexity. Therefore, one must seek new ways

f or developing insights .

Taylor and Comstock [24] have given results that allow one to predict battle

outcome (in particular , force annihilat ion~ ) in theory without having to spend the time

and e f f o r t  of computing force—level trajectories. To be computationally prac tical ,

however , their results require the determination of the so—called parity—condition

parameter (“ the enemy force equivalent of a friendly force of unit strength ” ) ,  which

depends on only the model’ s at t r i t ion—rate coefficients. They analytically determine

the parity—condition parameter for power attrition—rate coefficients with “no offset ,”

which allow one to model combat between two weapon systems with the same maximum

tEspecial].y since one frequently uses models that are so complicated that trends are
not directly discernible without extensive (and costly) computer runs .

I.e. without explicitly computing force—level trajectories.

1Bonder and Honig [8) point out , however , that force annihilation may not always
be the best criterion for evaluating military operations. See pp. 192—242 of Bonder
and Farrell [7] for a detailed Lanchester—type analysis of an attack scenario for
which other “end of battle conditions” play the principal role. Nevertheless , it
is of considerable interest (especially for developing insights into the dynamics
of combat) to be able to easily predict the occurrence of force annihilation .

2
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effective range but different range dependencies for each system ’s fire effective-

ness (See also [23]). It is the purpose of this paper to show how to determine the

parity—condition parameter in other cases , in particular for power attrition—rate

coefficients with “positive offset ,” which allow one to model such combat between

weapon systems with different maximum effective ranges . Our results allow one to

study In general such variable—coefficient combat models almost as easily and

thoroughly as Lanchester ’s classic constant—coefficient model.

The organization of this paper is as follows . We first review Lanchester—type

equations of modern warfare , especially variable—coefficient formulations . Next we

review force—annihilation—prediction conditions for such models and show how to use

knowledge about the parity—condition parameter for one set of attrition—rate

coefficients to numerically determine it in related cases of interest. This general

theory is then applied to the important case o t ~ offset power attrition—rat e

coefficients , with detailed numerical examples being given.

2. Lanchester ’s Classic Combat Formulation.

F. W. Lanchester [16]t hypothesized in 1914 that combat between two milit ary

:1:
forces could be modelled by

dx/dt = — ay , dy/dt = — bx , (1)

with initial conditions

x( t  = 0) = x0 , y ( t  = 0) = y 0 , ( 2 )

where t = 0 denotes the time at which t h e b a t t le beg ins , x(t) and y (t )  denote

the numbers of X and Y at time t , and a and b a r e nonnegative constants which

are today called Lanchester attrition—rate coe flicie nt s a nd r ep resen t each side ’ s

fire effectiveness. We will r e f e r  to ( 1)  as 1~~t ie he~~t e r ’s e~ t i a t i o ns ef modern

~See also p. 45 ot  [ 2 2 ] .

The equa t ions  I r e  o n ly  v a l i d  fo r  x , v 0. Icr examp le , t h e  f i r s t  heco p ’ s
dx/dt = 0 when x = 0.

_ _ _ _  

~~~
- - - . .~~~~-—* - ,

~~~ -- .



warfare.t Various sets of physical circumstances have been hypothesized to yield

them: for example , (a) both sides are aimed fire and target acquisition times are

constant [27], or (b) bo th sides use area f ire and a constan t density defense (see

p. 345 of [13]).

From (1) Lanchester deduced his famous square law

b(x~ — x
2
(t)) = a(y~ — y

2(t)) . (3)

Consider now a battle terminated~ by either force level reaching a given 
“breakpoint”:

for example, Y wins when X
f 

= x (t f ) = x~~ 
= f~~

’x0 but Yf > Y = fBP~ where

t f~ X f~ Y f 
denote final values and XBP denotes X ’ s breakpoint which is a given

fraction f~~ of his initial strength. It follows from (3) that

T~~ B P 2
x ,a{l — (f ) }

Y will win if and only if —~ < ,.j 2 ‘ 
(4)

~
‘O b{l — (fBP) }

which for a fight—to—the—finish (i.e. f~~ f~~ = 0) becomes the classic result

Y will win a f igh t—to—the—fin ish  if and only if —~ < . (5)

Unfortunately , no relationship similar to (3) holds in general for variable

attrition—rate coefficients.~ This paper , never theless , shows how (5) generalizes

in these cases.’’ Recalling that the time history of the X force level is given by

x (t )  = x0 coshv’~~ t — y0 .J~ sinh ,’~~ t , (6)

we see that  the batt le trajectories depend on the two weapon—system—performance

tOther forms of Lanchester—type equations appear in the literature [13 ,18), but we
will not consider these here .

The modelling of battle termination is a problem area in contemporary defense
planning studies (see pp. 524—525 of [25)).

~Except when a(t)/b(t) = constant (see p. 48 of [22)).

‘1 So far we have not been able to generalize (4).

4 
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paramete rs :  ( I )  the  i n t e n s i ty  of combat V~1 , and (II) the relative fire effectiveness

a / b .  Only the relative fire effectiveness , however , determines the battle ’s outcome

[see (4 )  and (5)  above] .

3. Variable Attrition—Rate Coefficients

Bonder [2] has pointed out that in many cases (for examp le, in the case of mobile

weapon systems) the validity of the assumption of constant attrition—rate coefficients

is open to question ~see also [1 ,3,7]). Thus , we consider

dx/dt — a(t)y, dy/dt = — b (t)x , (7 )

where a(t) and b(t) denote time—dependent attrition—rate coefficients . We assume

that a(t) and b(t) are defined , pos i t i ve , and cont inuous  fo r  t
0 

< t < + ~‘ with

to < 0. We also assurnet tha t a(t), b(t) c L(t 0, T) for any finite T. We further

take a(t) and b(t) to be given in the form ~i ( t)  = k g ( t ) , b ( t )  = kb h ( t ) , where

k
a~ 

k.b 
are positive constants chosen so t h a t  a ( t) / b (t )  = k /ice, 

when g ( t )  = l i ( t ) .

Analogous to the constant—coefficient case [see discussion after (6)], we have the

two weapon—system—performance parameters: (I) the intensity of combat , 1(t) =

/a(t) b(t); and (II) the relative fire effectiveness , R(t) = a(t)/b(t). We accord-

ingly introduce the combat-intensity parameter 
~~ 

and the relative—fire—e l fective—

ness parameter 
~R 

defined by

= 
~
ka

k b and 
R 

= k / k b 
. (8)

Two significan t developments in the Lanchester theory of combat during t h e

1960’s were the development of methodology for (a) tile prediction of Lanchester

attrition—rate coeffici ents from weapon—system -~~~I ‘r m l n e e  data by S. Bonder I 2 , -~ 1,

and (b) the (maximum l ikelihood) estimat ion of such  coc t  I icients from ~lon t L ta r Ic

simulation output by C. Clark [11]. Both these developments m d  others
t 

have

~For convenience , we i mi~ roduce t h e  no t  it ion that a ( t )  1. ( t
0 
,fl ne ins that

:~ a(t)dt exists (and is given by .i t m i te  qu a n t  I t \  ) . From our ~isstimp t i ’its abou t
0 T

n( t )  and h( t )  , it lot lows that ;i( I ~ L( t
0 ,T) i m p  h i s  t ii. ~ t -

~~~ 

( t )dt = +

I)
tSee 12 2 1  f o r  f u r t l m -r  r I

5
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generated interest in the model (7) and facilitated its application (and that of

its generalization to combat between heterogeneous forces [7)) to defense planning

studies.

A large class of tactical situations of interest can be modelled with the

following general power a t t r i t ion—ra te  coeff ic ients  [7 , 22 , 24]

a( t) = k(t + C) 1’, and b ( t )  = k,,(t + C + A)’~, (9)

where A , C > 0. We will call A the offset p~arameter, since it allows us to model

(with ~~~, v > 0) battles between weapon systems with different maximum effective

ranges . We will call C the starting parameter, since it allows us to model (again

with p,  V > 0) battles tha t beg in within  the minimum of the maximum e f fec t ive  ranges

of the two systems. For example, let us consider Bonder ’s [1,3] model of a constant—

speed attack on a static defensive position (see also [18 ,22] ) . Then we have

dx/d t — ct ( r )y  , dy/dt = — B(r)x , (10)

where r ( t )  = R
0 — vt denotes the distance (range) between the two opposing forces ,

I
R
0 

denotes the battle ’s opening range, v > 0 denotes the constant attack speed ,

0 for r > R ~ ,
t ( r)  = (11)

for 0 < r <

0 , and R denotes the maximum ef fec t ive  range of Y ’ s weapon system. Similarly

for ~(r), with exponent V > 0. In (11) the parameter u allows us to model the

range dependence of Y ’s f i r e  ef fec t iveness  (see Fig.  1). The o f f s e t  and s tar t ing

parameters are given by

A = (R~ — R ) / v  , and C = (R — R0)/v  , (12)

and the assumption A , C > 0 implies that R~ > Ra > R0. From considering ( 12)

and Fig. 2, the reader should have no trouble understanding our terminology for A

and C.

The t ime h i s to ry  of the X f o rce  leve l , i.e. the solution x(t) to ( 7 ) , is

g iven by [ 2 2 ]  6 
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x ( t )  = xo~ Cy (0)C
~~

( t ) — S
~~

(O)S
~~

( t ) } — y 0/ ~
Cx (O)S x

( t )_ Sx (O)C x ( t ) },  (13)

where the hyperbolic—like general Lanchester functions (GLF) Cx(t) and S
~
(t) are

linearly independent solutions to the X force—level equation

— -

~

-

~~

- } 
~~~~~ 

— a(t) b(t)x 0 , (1 4 )

with initial conditions

Cx(t = t0) = 1 , Sx(t = t0) = 0

(15)
{[1/ a(t)]dC

~
Id t(t)}

~~ t
= 0 , {[l /a(t) }dS

~
Idt(t)}t~~ 

i,v5~

where t
0 

denotes the largest finite time at which a(t) or b(t) ceases to be

defined , positive , or continuous. For example , t
0 

= —C for the general power attti-

tion—rate coefficients (9). The time history of the Y force level may be similarl y

obtained , with C~ (t) and S~ (t) being analogously defined for the corresponding

Y force—level equation .

For the numerical determination of the parity—condition parameter , it is con-

venient to introduce a new independent variable s defined by

t

S = KA
1 

f ~ g(o)  da , ( 1 6 )
0

where the parameter K is to be chosen to simp lify the form of J(s) given by (18).

We denote s(t = 0) as 
~~~

, and then s0 
> 0 if and only if t

0 
< 0. The sub-

stitution (16) transforms (14) into the normal form [17]

2
— J(~-)x = 0 , (17)

ds
where

J ( s)  = 
~2 ~ 

‘ (18)

and t = t (s) - We a Iso define I he norma l—tu rn li vp et ts~ I I i ~~~
- ;1J- (s) and

wh i c l i  s. m -; -, ( 1 7 )  and t hmi in ! ti a I cond I t I

7 
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c~~
(s 0) 1 , 0) 0 ,

( 19)
dcx/ds(s = 0) = 0 , dsx/ds(s a 0) 1

It follows that

cx(s(t)) 
a Cx(t) , and 9

x
(8(t

~~ 
KSx(t) - (20)

4. Force—Annihilation—Prediction Conditions

ThEOREM 1 (Taylor and Comstock [24]): Assume that either a(t) t L(0 ,+ °°) or

b( t) ~ L(0,+ ° ) .  Then the X force will be annihilated in finite time if and ~~~~ if

X
0 ~ 

C~ (O) — Q*s (0)
— <  ~~ * 

, (21)( Q c,~(o) — S~~(O)

where the pari ty condition parameter Q* ~~~~~. unigue given ~~

Sx(t) 1
lim C ( t ) 

a~~~~ (22)
t — 4 - -f~~ X Q

Remark 1: We also have u r n  {S~ (t)/C~ (t)) = Q* -

Remark 2: When = 0 , (21) simplifies: X will be annihilated in f in i t e  time if

and only if x0/y0 <

Remark 3: The result (22) suggests a numerical procedure for approximately deter-

mining the parity—condition parameter Q*: we may approximate the p a r i t y — c o n d i t i o n

parameter Q* by Q a l/{S
~
(
~

)/C
~

( t)}
~ 

where t is a “suitably large” val ue of t .

In other words , we may estimate Q* simp ly by p icking a large value for  t (we

denote this selected large value by t), computing Sx(~
) and Cx(~

), and then form-

ing their ratio. Our estimate for Q* is then given by Q = 1I{S
~
(
~

) / C
~
(
~

) ) .  The

only problem is that we don ’t know how large to take t for  “satisfactory ” estima—

* *tion of Q : There is an estimation error , E(t) = Q — Q(t), which depends mono—

tonically on t , and a p r io r i  we don ’ t know how large this error  is.  The present

paper develops a bound on the magni tude of this error , and our new error estimate

8
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allows the goodness of approximation to be easily evaluated in many cases of interest.

We may also determine the parity—condition parameter with the normal—form hyper-

bolic—like GLF , since u r n  
+

{s
x(s)/cx(s)j = l/Z~ = K/Q~

C
, where Z is called the

modified parity—condition p~arameter . In fact , we wil l f i n d  it more convenient to do

so. With this in mind , let us introduce the Y—functions c
1

(s) and s
w(s) [corres-

ponding to cx(s) and s
x(sfl 

defined by

dc~/ds = , ds~ /ds = J(s)c
~ 

, (2 3)

with initial conditions

= 0) = 1 , s~~(s = 0) = 0 - ( 2 4 )

It follows that c
r

(s) and sr(s) are linearly independent solutions to the modified

Y equation

d I l  dv~1 ~ft~7 -1i-
~

-- ( — ‘- = 0 , (25)  4

and

c~ (s( t) )  = C~ (t). s~ (s(t)) = (1/K) S~ (t) . (26)

In terms of the new time variable s defined by (16), Theorem 1 reads as follows :

THEOREM 2: Assume that either a(t) / L(0, + c~ ) or b(t) t L(0, + c i) .  Then the X

force will  be annihilated in finite t ime  i f  and on 1~~ if

~ 
c~ (s~) — Z*sx(so) } ( 2 7 )
Z c~ (s0

) — s~, (s 0 )

where the modified time variable s is given by (16), and cx(s), 
s
x(s), c~ (s)~ ‘nd

s
w
(s) denote the normal—form hyperbolic-like GLF. The modi f ied p~. rity—condi ticn

*parameter Z is ~~~~~~ and g iven ~~
S
\

( S )  
~Urn - - — -- = - -

~~ 
- (28 )

~ 
r~~(s )  z

We observe t h a t  
* *

Q = ‘.2 . (2n)

L ~~~~~~~~~~~~~~~~~~~~~~~~
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and Urn +~
{sy (s)/cy (s)}  Z’~. When (27) holds, the time to annihilate X, denoted

as t~~, 1: de termined by x( t~) a 0. If we denote the quotient of the two normal—

form hyperbolic—like GLF s
~
(x) and c (s) as then it follows from (13) that

~x0
c~ (s

0
) +

r~ ( s ( t  ) )  = , (30)X a {x0s~
(s
0

) +

where

(31)

5. Determination of the Pari ty—Condition Paramciter.

*We will now show how knowledge about the modified parity—condition parameter Z

f or one pair of a t t r i t ion—rate  coeff icients , a ( t )  and b1( t ) ,  allows us to determine

for  a related pair , a ( t )  and b(t). With this in mind , let us denote cx
(s)

corresponding to a(t) and b(t) as cx(s;a,b), 
and similarly for s and q .

In other words, we will now write (31) corresponding to the attrition—rate coefficients

a ( t )  and b ( t )  as

a 5
x(5a ,b) /c

x(5a,~~ - (32)

In this notation, we will wri te  (28) ast

lirn y~~(s;a,b) l /Z*[a ,b] . (33)
S -3’ +cU

Our main resul t is Theorem 5, which gives an error estimate for the approximation

*that we propose for Z . The theoretical basis for Theorem 5 is given by Theorem 4,

which (in turn) is a consequence of Theorem 3. The proof of Theorem 3 follows along

the lines of well—known arguments (see p. 225 of [15]).

tWe use the notation Z*[a ,b] to show that the modified parity—condition parameter is
a functional ( i .e .  a funct ion for which the independent variables themselves are
func tions) , which depends on only the attrition—rate coefficients a(t) and b(t).
In other words , the attrition—rate coefficients are functions defined for t0 < t +~ , -

and the parity—condition parameter depends on these entire functions (and not
merely particular values of them).

10 
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THEOREM 3 (Comparison Theorem): Let x ( t )  and x 1(t )  sa ti s~ y

-fr {— ~y 
~~~ 

} — b (t)x = 0 
~~~~

- 

{ ~~~ ~~~~ } 
— b

1(t)x 1 = 0

with initial conditions

x(t = t
0
) = x , x

1
(t = t

0
) =

{[l/a(t)jdx/dt(t))
~~~ 

= 
~ 

, {Il/a( t 1dx
i
/d t(t))

~~~ 
=

0 0

where a(t) > 0 and b
1(t) < b(t) for all t -, t

0
. then x

1
(t) < x(t) for all

t > t
0 

as~~~~~g~ as x(t) > 0.

*The basic t heore t i cal  r e s u l t  upon w l u ch  our  ni ~s - i i c - i 1 d e t e r m in a t i o n  of Z

is based is

THEOREM 4. Assume that b
1
(t) < b(t) for ~~l t - - t

0
. then

< 1/Z~ [a,b] < n~~~ ;a ,h) + 
~
(l/Z [a ,b i

])_ n
~
(s;a ,b 1

) )  . (34 )

PROOF: We observe that [24] r)
~
(s;a,b) satisfies the ditferential equation

dflx/ds(s;a,h) = 1/{c
~~
(s;a ,h )

~~
2 , ( 3 5 )

with ri
~
(s = 0;a ,b) = 0, and similarly for fl

~
(s;a,b i

). Theorem 3 (the comparison

theorem) yields that c
~
(s;a,b) c

~
( s ;a ,bi) for all s > 0. Thus, for all s > 0

dn x
/ds(s;a ,b) < dr~~/ds(s;a ,b 1

)

whence integration between 0 an d s y i e lds the desired result. Q~~
.D.

Similar to the observations made in Rema rk 3 above , we observe that (33)

suggests that we estimate Z*Ea ,b l with Z dot m e d  b y

Z(s;a ,h)  = 1/n \ (s~ a .s )  , (16)

where s denotes a s u i t a b l y ch osen va lut fo r 5- ~1o r t o v t r , i roili ( ~5) we see that

is a str ic tl y i Iit -r - lsing function ti  s so tha t the l a rger  we take s

in (36), the better our a p p r o x i m a t i o n  becomes. The on1~- prob l em ( ‘ - i -  Remark ~) is

1 1
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that a priori we don ’t know how large to take s for “satisfactory” estimation

of Z’~. Theorem 5, however , tells us exactly how large to take s.

THEOREM 5 (Error Estimate for Approximation): Assume that b
1(t) < b(t) for all

t > t
0

. Le t f E(s) denote the fractional error made in the estimation of Z*[a ,b]

~~ Z(~ ;a ,b), i.e.

f = Z(s;a,
b) — Z*[a,b] (37)

E Z [a ,b ]

Then

0 < 
~~~~~ 

< ~~h/z
*[a ,b11) — nx

(5;a ,bi
)} - 

~(s;a ,b) - (38)

PROOF: The theorem follows by simple algebraic manipulation after setting s a s

in (34) and using (37). Q.E.D.

*Thus, we have presented a method for numerically determining 2 [a ,b]. We

simply pick a large value for s (we denote the selected value as s), compute

s
x

(s) and c
s(s), 

and then compute the estimate Z(s;a,b) according to (36).

Theorem 5 allows us to know the accuracy of our appr oximation , which can be improved

*by taking s larger. Thus, we can numerically de termine Z [a ,b] to any specified

degree of accuracy once Z*[a ,b1] is known. In the next section we apply this

theory to the analysis of battles modelled with offset power attrition—rate

coefficients .

6. Application of Theory to Offset Power Attrition—Rate Coefficients

In the appl ication of Theorems 4 and 5 , two pairs of a t t r i t i o n — r a t e  coe f f i c i en t s

are involved: one pair for  which the modified parity—condition parameter is known

[denoted as a(t) and b1(tfl, 
and one for wh ich i t  is to be determined [denoted

as a (t )  and b ( t ) ] .  Accordingly , we rewrite (9) with A > 0 as

a( t )  a k(t + C)~~, and b ( t) a kb ( t  + C + A) ’1, (39)

12
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where (as before) C > 0. We will refer to these coefficients (39) for which A > 0

as power attrition—rate coefficients wi th  “positive offset.” If we choose

K = [A 1/ (Vf l)] 21)
~~ (40) 

-

it follows from (16) that the modified time variable s is given by

s(t) = [A
1/ ( p+l)] 2~ (t + C)

L
~~ , (41)

and the invariant J(s) of the normal form (17) simplifies to

J(s ;a ,b) = J ( s ;y ,~~,v) = s~ (l + ~~~ ) , (42)

where p = (M+l)/Z , a = l/(p+l), ~ = (v—p)/(p+l), y = A [ ~ 1
/ ( p+l) ] 2~~,and ~ = o+v+ 2. 

-
-

Here we have denoted the invariant corresponding to the attrition—rate coefficients

a(t) and b(t) as J(s;y,~i ,v), since we may take y, ~, and v as a basis for

generating the four parameters c~ ~, y, and v that explicitly appear in the ri ght-

hand side of (L ~2 ) .  Furthermore , we will denote the normal—form hyperbo lit-like GLF

that correspond to J(s;y,p,v) as ex(s;’y ,mi ,v) and sx(s;1,11 ,’1).

The known results [24] that we use in the Theorems 4 and 5 are for the case

of power attrition—rate coefficients with no offset [i.e. set A = 0 in (9)]

a(t) = k(t + C)1
~, and b1(t) = kb (t + C)

’1, (-~i 3)

where C > 0. We observe that b
1(t) 

< b(t) for all t > —C. It follows that

J(s;a,b1
) = s~ and [24 ]

Z*[a ,b1) = ~
(2
~-l) F(1-p)/I’(p) . (44)

* *Thus , for the bound on Z [a ,b] = Z (y,~~,v) given in Theorem 4 and the error estimate

for our approximation (36) given in Theorem 5, we have [2 3 ]

0x(5~~
,bi) = 

(1~ 2~~ T ( S)

where S = 2 1 /(2 p ) 
q = l—p, and T

q 
denotes a inc1i ster—C 1ifford—S ch~if 1I

(LCS) functlon ,~ which is analogous to the hivpe rho l i c t a n g e n t  (St e T a b l e  1) -

TTh functions were introduced in [22] and redt t m e d  for reasons of fo rce— ann ihi i—
l a t i on  p red i c t i on  in [ 2 3 ] .

13 
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TABLE I.

LANCHESTER—CLIFFORD—SCHAFLI FUNCTIONS

F1~(x) = r(a) 
k~0 

k!r (k+c~)

2 (k+a)
H
~

(x) a 
~~~ k~0 

k~ 

(x/2) 
a + 1)

T ( x) Hi_a(x)/ Fa(x)

Relation to normal-form GLF.

c
’

(s) = F
q (S) 5x~~ 

= P
2
~~H~ (S)

cr(s) = F
r

(S) si(s) — P
(2P 1)

H
q

(S)

where q = i—p and

S(s) a 2ps
’
~
2
~
’
~

NOTE: For p a \), we have

(I) c
x
(s) = c

r
(s) = F

112
(s) a cosh S ,

(1~~) = sr (s) = H
112

(s) — sinh s ,

( II I )  
~~~~ 

a ri,~ (s) = T
112

(s) a tanh S.
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1~~~~~~ 

_ T :
~~~~~~~~~~~~

_ — -  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In fac t,

n(s;a,b1
) = tanh s, when p = V . (46)

We have thus shown that the following theorem holds.

THEOREM 6: Assume that either p > —l or V > —1. Then for a battle modelled with

the offset power attrition—rate coefficients (39), bounds on the modified parity—

*condition parameter 2 (y,p,~~) are given for y > 0 by

* 
1 < fl (s;~~,p,v) + ~

q—p 

~~ 
- T

q (S)} 
(47)

2

where q = l—p, S = 2ps~~~
2
~~ , and n

~
(s;y,P, \) denotes the ~~~ç4ep~ of two normal—

form hyperbolic—like GLF for the attrition—rate coefficients (39), i.e.

=

It follows from Theorem 6 (or, equivalentl y , Theorem 4) that if we approximate

Z*(y,p,v) with ~(~~;‘y,p , V) defined by

Z(s;y,p,V) = 1/n x(~
;Y,

~
,’)) , (48)

then bounds on the fractional error made in this estimate are given by

~ < 
~E (

~
) < ~q p {  

~~~~ 
— T

q (S)} ~~~~~~~~~~~ 
( 4 )  -

where denotes the fractional error and is defined by (37).

The r ight—hand inequality in (49) [equivalently, (47)] tells us exactl y how

large to take ~ for the estimation of Z*(( > O ,p,v) by Z(t~;y, t i ,V) to any

specified degree of accuracy. The LCS function T
q 

is involved in the bound on

the frac tional er ror f E(s) in this estimate when p ~ v.~ Thus , the ICS functions

as redefined by Taylor and Brown [23] yield valuable Information about batt les

modelled with not only the power attrition—rate ttf fi c t e nt s with no offset (43) but

also the offset power attrition—rate coefficients (39). Ava ilah i1itv at tabulat ions

of these LCS functions is discussed in [23].

tThis result is one of our re;lsnns fo r  introduc tug the norma l fo rm  ( 7 )  -

*As (46) and Table I show , Tq (S) = t an h s when p

----

~

--— ~~~—-~~~~~~~~~~ -- -~~~~~ ~~~~
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7. Numerical Results

In this section we will examine a couple of numer ical examples to show how

*the modified parity—condition parameter 2 may be numerically determined and to show

some important insights into the dynamics of combat that may be consequently obtained .

In order to numer ically determine the modified parity—condition parameter for the off-

set power attrition—rate coefficients (39), we must use knowledge about how quickly

the limiting value (i.e. Z [a ,b1]) 
of a hyperbolic—tangent—like function of a related

pair of power attrition—rate coefficients with “no of f s e t” (43) is reached as its

argument is increased [recall Theorem 6 and (49)]. In Fig. 3 we see that this limit-

ing value, denoted as Z*(p,u) = Z*[a ,b1] ,  is quite quickly reached : if one takes

s = 10.0, then Z (p , v) is approximated to be tter than six dec imal places by

= l/Tlx(s;)1,V), where is given by (45) . Experimental computing for

various values of p and V and comparison with the known value (44) for Z (p,v)

bears Out this degree of accuracy [i .e.  speed of convergence of ~ (~~;p , v) to Z~~]

for essentially all allowable values of p and V. Thus, Z(s;p,v) for the coef-

ficients (43) has essentially converged to Z*(p , v) when ~ = 10.0, and by Theorem 6

or (49) we know that the same is true for Z(s;y,p,v) for the coefficients (39).

We have accordingly generated by this procedure the results shown in Fig. 4.

For computing a 5x/c~
, we have used the ser ies solutions shown in Tables II and

III. [In Tables II and III we have for convenience denoted , for example , s
~
(s;y,U,v)

simply as 
~~~~~~~~~~~~~~ 

i.e. s
~~

(s;P , V) denotes s~ corresponding to the general

power a t t r i t ion—ra te  coeff ic ients  (9) with exponents p and V . ]  The series were

obtained by solving (17) by the method of successive approximations (see [18]). We

used these series instead of developing approximate solutions by finite—difference

methods because we did not have any error bounds for the latter .

Let us now give an intuitive interpretat ion of the curves shown in Fig. 4

*of the modified parity—condition parameter Z plotted versus the modified offset

parameter 1. In Taylor and Comstock [24] it is shown that Z”~ may be considered

15
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TABLE II

NORNAL—FORM OFFSET LINEAR LANCHESTER FUNCTIONS

c
~
(s;l,l) = 

k~O ~~~~ ~~O ~ 
(
~~ ~

2k+l k - j
sx (s;l , l) = 

k=O 
( +1). 

~L B~~( ~~
)

~1.

where the offset coefficients are given by

A~~ = l , and fo r  k > l

Aj~ (4k—j)(4k—2—j) ~~k—l 
+ A~~~} for 0 

~ i ~ k

a 1, and f or k > 1

B~ = 
(4k-j)(4k+2-j) ~~~~~ + B~~~ } for 0 ~ i ~ k

have adopted the conven t ion  t h a t  A~ * = 0 for j 0 or k.



TABLE III

OFFSET POWER LANCHESTER FUNCTIONS FOR p = 1 AND V = 2

2 5/4 2k 
2

c
x(s;i ,

2) = F (~~ ) 

k=O k~ F(k  + ~) J O  
A~ (

~~~~)3

(
2 
55/4

)
2 (k+2/5) 2k j

s
x
(s;l,2) = (2)1/5 f(-~-) ~ 

~ B~ (
-b-

)k 0  k~ r’(k + ~) j O

where the o f f s e t  coe f f i c i en t s  are given by t

and for k > l

4 
= 
(Sk—j)(5k 2—j) {4:~ 

+ 24:~ + 4_l 
for  0 

~~ i ~~ 2k

B~ = 1, and for  k > 1

4 
= (5k

5

~~~~~~~~ J) 
(B~~~ + 2B~~~ + B~~~1} for  0 j  2k

w~ have adopted the convention that 4, 4 
= 0 for j < 0 or j -

~ 2 k .
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to be the initial Y force level that leads to a draw t (i.e. parity between the

forces) in the battle against an X force of “unit s t rength”

dx/ds = —y with x(s = 0) = 1
* 

(50)
dy/ds —J(s)x with y(s = 0) = Z

where J(s)  denotes the invariant of the normal form (17).  Thus , we may consider

2* to be “the Y equivalent of an X force of unit strength” for the modified

battle (50) . Now let us consider the general power attrition—rate coefficients (9)

with exponents p and V. As we did in Tables II and III, we will denote the corre—

* *sponding J as J(s;p,v) and 2 as Z (p,v) to stress the dependence on p and

V (but suppressing that on y). We then have from (42) that J(s;1,l) = 1 + y// s

and J(s; 1,2) = /i (1 + y / v’~)
2
. From (44) we find that Z*(l ,l) = 1.000 and Z*(l,2)

a 0.806 for Y a 0. Observing that for y > 1 we have J(s;l,l) < J( s;l ,2) for all

*
S > 0 , it is intuitively clear from (50) and the interpretation of Z as a force

— equivalent that we must have z*(l,1) < Z~ (l 2) f or all ~y > 1 because X always

has greater f i r e  effectiveness against Y when p = 1 and V = 2 than when p = 1

and V a 
~~• However , f or y near zero, the situation is reversed and Z*(l ,2) must

lie below Z*(l ,l) for y near zero. Thus , we have given an intuitive explanation

* *of why 2 (1,2) lies below Z (1,1) for ‘y near zero but above it for ~ > 1 as

Fig. 4 shows.

Nex t, we will consider numerical results for a particular battle to show some

of the important insights that may be gained into the dynamics of combat from our new

results. As in [18,22 ,2)] we consider S. Bonder ’s [1,3] model (10) for the constant—

speed attack of mobile forces agains t a static defensiv e position. We will focu s on

the new results given in this paper (in part icu lar . the prediction of battle outcome

from initial conditions without exp l i r it l v computing thc force—level tra i ectorico ).

Input data and computed parameter  values art- shown in i u t ~lv IV . W t  w i l l  now consider

two cases: (I) R0 = 1500 meters , and (II) R1) 1.’~ P raters.

other words , x (s)  and v(s) > I) f r  i ll  s - ( ) , +~-~ hu t l im ~~x(S) 
a 0

lim 8~~~~ ,y ( s ) .

U’
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TABLE IV

PARTICULAR S FOR THE NUMERI CAL EXAMPLES

1. Inpu t Data 
-

- ‘ j J V l  
-

0.06 X casualties/minute/y unit 
-

0.6 Y casualties/minute/x unit -

1500 meters , R
8
= 2000 meters -~~

v = 5 miles/hour

2. Parameter Values -

k
a
= 5.364 X lO~~ X casualties/minute/y unit -

4.023 x ~~~~ Y casualties/mjnute/X unit

p q = l / 2

A = 3.728 minutes , y = 0.320 (casualties.minutes) h / 2  



When 1500 meters , we have c 0 and s0 = 0. The maximum time that

the bat t le  can last is t 11.18 minutes , since at this time the advancingmax
* *at tackers  overrun the defensive position. In this case Z (y ,u , V) = Z (0.32 ,1,1)

= 1.381 , so that Theorem 2 tells us tha t  X can be annihilated < = >  x 0/y 0 < 0.264.

By (30) the X—for c e annihilation time is given by n x ( s (t
~

))  = 2.739x 0/y 0 . For

x0 = 10 and y0 — 50 , we have r)
~
(s
~
) = 0.54772 so that by the techniquest introduced

in [23] we f ind s~ = 0.77 1. Hence , (36) yields = 10.25 minutes and rX = 125.7

meters. Further results are given in Table V.

When R0 1250 (see Fig. 5 of [22]), we have c a 1.864 minutes , s0 
= 0 .0255

and t = 9.32 minutes. In this case X can be annihilated <==> x /y < 0.281max 0 0

with the X—force annihilation time given by nx
(s
X
) = (l.OOlu0 + O . O O 9 ) / ( O . 1 2 7 u

0+ 0.366),

where u0 x
0/y0. Numerical results are given in Table VI. Finally , these parametric

results should be contrasted to those previously possible (e.g. compare tt- am with ,

f or example, the single force—level trajectory for R~ = 2000 meters shown in Fig. 5

of [221).

8. Discussion

S. Bonder [1—3] has emphasized the shortcomings of constant—coefficient

Lanchester—type combat models. Work by Bonder (1,2]. Clark [11], and others [ 7 1  on

the prediction of Lanchester attrition—rate coefficients has generated interest in

variable—coefficient models. Moreover , there is not only intrinsic interest (see

[1,3]) in the model (7) but also interest for obtaining insi ghts into the behavior

of complex Lanchester—type system models5 that have been enriched in militar y detai l

These computations involve the generation of a table of s~~, ~~~~~ and for
= 0.32, p = V = 1 (see [23]). -

~See Taylor and Brown [221 for further dlscti sslou and references.

§For example , the Bonder—WA model (see [7-P]).

17
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TABLE V

ANNIHILATION OF THE X FORCE AS A FUNCTION

OF THE INITIAL FORCE RATIO FOR R
0 

1500 METERS

X x(x0/y0) ta(minutes) r
a(meters)

0.250 14.09

0.200 10.25 125.7

0.167 8.80 319.4

a 11.18 minutes and x = x(r 0) a 2.48max f

TABLE VI

ANNIHILATION OF THE X FORCE AS A FUNCTION

OF THE INITIAL FORCE RATIO FOR R — 1250 METERS
0

(x
0/y0) t~ (minutes) rX(meters)

0.250 10.87

0.200 8.17 154.4

0.167 6.93 320.4

a 9.32 minutes and x = x(r = 0) = 1.74max f

______
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see [7—10,12,14]). The attrition—rate coefficients in (7) represent the fire

effectiveness of the combatants and allow us to model temporal variations in fire

effectiveness on the battlefield . Interest in the general power attrition—rate

coefficients (9) is provided by S. Bonder ’s [1,3,8] constant—speed attack model
T

(1O)—(ll) and his examination of the range dependence of attrition—rate coefficients

for various weapon systems (see pp. 196—200 of [7]).

We have given results that allow one to study the variable—coefficient model

(7) [especially with the general power attrition—rate coefficients (9)] almost as

easily and thoroughly as Lanchester ’s c lassic c o n s t a n t — c o e f f i c i e n t  model (1) .  Taylor

and Comstock [24] (see Theorems 1 and 2 above) have shown how to predict force

annihilation without having to spend the time and effort of explicitly computing

force—level trajectories. Using their theoretical results , we gave results in a

previous paper [23] that made combat modelled by power attrition—rate coefficients

with no offset* [i.e. A = 0 in (9)] almost as easy to analyze as the constant—

coefficient case. The results of the paper at hand allow one to analyzed combat

modelled by power attrition—rate coefficients with positive offset5 [i.t. A 0

in (9)) just as conveniently.

Theorem 1 (see also Theorem 2) is the generalization of the classic constant—

coefficient result (5) to cases of t ime—dependent attrition—rate coefficients. How-

*ever, one needs to know the value of the so-called parit y—condition parameter Q

in order to predict force annihilation in spu -c i t i~ i n s t a n c e s .  In t h i s  paper we h tvt

presented theoretical considerations (Set- ~~&- d o n  S above) tar the noniterative

numerical determ ination of the par t t v - c o n d i t i o n  l I r .unut-tt- r. We applied our genera l

theory to the s p ec i f i c  case at gu n. i i ‘ ‘~~. r .att ri tio r ~ ri t e  a t - t I  ici ents (9) ( s t O

t Thus , the range be tween t •- r m d  t t r~~, t  clianc .- - - d tir : ic t he e n g a g e m e n t .

~Modelling, for example , combat  h,- t we - , 1 t w -  weapon -~v - tt m s with the same maximum
e f f e c t ive range.

~Mode11ing , for example , comba t b &-tw en two wt .api*n -.v--t . - r -  w i t h  d i f f e r en t m a x i m um
e f f e c t ive ranges.

I-s

___________



Section 6) and illustrated these theoretical results by considering some numerical

examples (see Section 7).

Curves of the modif ied pa r i t y—cond i t ion  parameter plotted against the

modified o f f s e t  parameter ‘
~ 

such as those shown in Fig. 4 allow one to parametrically

analyze “modern” combat modelled with the general power attrition—rate coefficients

(9) . For example , we can now parametricallyt determine whether the defender  wi l l

be overrun in Bonder ’s [1,3,8] constant—speed—attack model (10) with a t t r i t i o n — r a t e

coefficients (11) without having to compute the entire force—level trajectories. We

illustrated this analysis capability with some numerical examples, which showed that

the defender ’s annihilation (i.e. saturation of his defensive position with offensive

fire) depended on the initial force ratio (of defender to attacker) being below a

certain threshold value. Our new results allow one to not only easily determine such

force—ratio thresholds of survivability but also study their dependence on weapon—

system—capability parameters .

Our new resul ts  let us conveniently obtain much valuable informa t ion about

the model (7)~* Previously one was limited to only computing force—level trajectories ,

but now we can predict battle outcome (in particular , force annihilation) without

explicitly computing force—level trajectories. Moreover , these new results facilitate

parametric analysis~ of such combat situations . In particular , Theorems 1 and 2

exp l i c i t l y  exhibi t  a t radeoff  between qual i ty  (as quant i f ied  by the r e l a t i v e — f i r e -

effectiveness parameter A R and the parity—condition parameter Q )  and quantity

(as quantified by the initial force ratio x
0/y0

) of two weapon sys’’~~ in combat

against each other. In other words , one can use an expression like (21) to develop

1 Varying, for example , the maximum effective range of the defender ’s weapons .

*The classic ordinary differential equation theories (see, for example, Ince [15])
were inadequate to answer many important questions (for example , “Who will win?
Be annihilated?”) about such combat models.

~S. Bonder [5] has suggested tha t an increased emphasis be placed on parametric
analyses in systems analysis  studies (see pp. 21—22 of [ 5 ) ) .

19
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quantitative insights into how the quality of a weapon system may be substituted

for sheer numbers. Moreover , an unanswered theoretical question is to determine

*how the parity—condition parameter Q depends on the combat—intensity parameter

A1 and the relative—fire—effectiveness parameter A
R. Finally , our results here

are signposts as to the difficulty of analytically extracting information (particu-

larly parametric information without excessive computations) from variable—coef-

ficient Lanchester—type models such as (7).

20
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